本文共 1104 字,大约阅读时间需要 3 分钟。
点击上方"java全栈技术"关注,每天学习一个java知识点
原创: 小灰
————— 第二天 —————
————————————
让我们先来回顾一下计数排序:
计数排序需要根据原始数列的取值范围,创建一个统计数组,用来统计原始数列中每一个可能的整数值所出现的次数。
原始数列中的整数值,和统计数组的下标是一一对应的,以数列的最小值作为偏移量。比如原始数列的最小值是90, 那么整数95对应的统计数组下标就是 95-90 = 5。
那么,桶排序当中所谓的“桶”,又是什么概念呢?
每一个桶(bucket)代表一个区间范围,里面可以承载一个或多个元素。桶排序的第一步,就是创建这些桶,确定每一个桶的区间范围:
具体建立多少个桶,如何确定桶的区间范围,有很多不同的方式。我们这里创建的桶数量等于原始数列的元素数量,除了最后一个桶只包含数列最大值,前面各个桶的区间按照比例确定。
区间跨度 = (最大值-最小值)/ (桶的数量 - 1)
第二步,遍历原始数列,把元素对号入座放入各个桶中:
第三步,每个桶内部的元素分别排序(显然,只有第一个桶需要排序):
第四步,遍历所有的桶,输出所有元素:
0.5,0.84,2.18,3.25,4.5
到此为止,排序结束。
代码中,所有的桶保存在ArrayList集合当中,每一个桶被定义成一个链表(LinkedList<Double>),这样便于在尾部插入元素。
定位元素属于第几个桶,是按照比例来定位:
(array[i] - min) * (bucketNum-1) / d
同时,代码使用了JDK的集合工具类Collections.sort来为桶内部的元素进行排序。Collections.sort底层采用的是归并排序或Timsort,小伙伴们可以简单地把它们当做是一种时间复杂度 O(nlogn)的排序。
假设原始数列有n个元素,分成m个桶(我们采用的分桶方式 m=n),平均每个桶的元素个数为n/m。
下面我们来逐步分析算法复杂度:
第一步求数列最大最小值,运算量为n。
第二步创建空桶,运算量为m。
第三步遍历原始数列,运算量为n。
第四步在每个桶内部做排序,由于使用了O(nlogn)的排序算法,所以运算量为 n/m * log(n/m ) * m。
第五步输出排序数列,运算量为n。
加起来,总的运算量为 3n+m+ n/m * log(n/m ) * m = 3n+m+n(logn-logm) 。
去掉系数,时间复杂度为:
O(n+m+n(logn-logm))
至于空间复杂度就很明显了:
空桶占用的空间 + 数列在桶中占用的空间 = O(m+n)。
转载地址:http://nbaao.baihongyu.com/